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Abstract

We use temporally dynamic environmental variables and fixed geographic variables to construct generalized additive models
to predict delphinid (family Delphinidae) encounter rates (number of groups per unit survey effort) and group sizes in the
eastern tropical Pacific Ocean. The delphinid sighting data and environmental data were collected simultaneously during the
Southwest Fisheries Science Center’s cetacean line-transect surveys conducted during the summer and fall of 1986–1990 and
1993. Predictions from the encounter rate and group size models were combined with previously published estimates of line-
transect sighting parameters to describe patterns in the density (number of individuals per unit area) of delphinids throughout
t nd coastal
w d southern
s geographic
p phic strata.
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he study area. Areas with the highest predicted densities were the Gulf of California, the equatorial cold tongue, a
aters, including the west coast of the Baja Peninsula and the Costa Rica Dome. Offshore waters in the northern an
ubtropical gyres had the lowest predicted densities. For both encounter rate and group size models, there was no
attern evident in the residuals as measured by the ratio of pooled predicted to pooled observed values within geogra
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. Introduction

Since the mid-1900s, the number and type of human
ctivities that can adversely affect marine ecosystems
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has increased along with public awareness thereof
icymakers have responded by requiring that those
wish to engage in activities that may be detrime
to the marine environment formally assess the po
tial impact of their activities. A large proportion of t
high risk activities occur on a relatively small spa
scale. Ideally, the scale of analyses used in a risk as
ment would match the scale of the proposed act
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and affected area. Research into dolphin populations
in the eastern tropical Pacific Ocean (ETP) provides a
case study of how science has been stimulated by, and
responded to, the changing anthropogenic demands on
marine ecosystems.

ETP dolphin populations gained the international
attention of scientists, public policymakers, and con-
servationists in the late 1960s when it became evi-
dent that large numbers of dolphins were being killed
incidental to purse seine fishing operations for tuna
(Perrin, 1969). In the mid-1970s, the National Marine
Fisheries Service (NMFS) initiated research to deter-
mine the status of the affected ETP dolphin popu-
lations, and NMFS has continued this effort to the
present. A key component of the NMFS strategy has
been to conduct large-scale shipboard surveys to fur-
ther understanding of the dynamics and abundance of
ETP dolphin populations and the animals’ relation-
ships to the ecosystem in which they are embedded.
Since 1979, the NMFS, Southwest Fisheries Science
Center (SWFSC) surveys have followed line-transect
protocols to estimate the abundance of cetaceans in the
region; beginning in 1986, SWFSC research surveys
expanded to study the ETP ecosystem, collecting phys-
ical and biological oceanographic data to provide a con-

text in which to interpret the results from the cetacean
studies.

The ETP study area (Fig. 1) spans approximately
20 million km2 of the Pacific Ocean; therefore, the scale
of the SWFSC research vessel surveys is relatively
large compared to areas affected by high risk activ-
ities such as seismic surveys and military exercises.
Nevertheless, this ETP study area does not encompass
the entire range of any cetacean species (other than the
vaquita,Phocoena sinus, which is not considered here)
and interannual variability in abundance estimates for
many species has been attributed to movement of ani-
mals in and out of the survey region (e.g.,Gerrodette
and Forcada, 2002a). Understanding how these move-
ments can affect abundance estimates, which ultimately
depends upon how population density relates to the
environment, is a multi-scale problem. The large-scale
question is, What is overall range of the species? The
small-scale questions relate to habitat: What is the
population density in a given area and what environ-
mental factors affect the distribution and variability
in abundance of the species? Our research aims to
better understand the small-scale habitat questions.
Traditional methods of density estimation (e.g., line-
transect) do not provide the needed level of geographic

93 line ce Center.
Fig. 1. Transect lines covered during the 1986–1990 and 19
 -transect surveys conducted by the Southwest Fisheries Scien
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resolution and do not provide any deeper understanding
of the factors that might be causing changes in distri-
bution. Cetacean sighting data from past line-transect
surveys conducted by SWFSC contain information on
the small-scale distribution of individuals. These data,
in association with information about the marine envi-
ronment from relevant oceanographic studies, may be
used to (1) estimate dolphin densities on smaller spatial
scales and to (2) understand how environmental vari-
ability affects variability in cetacean distribution and
abundance.

Considerable work has been done to investigate
the distribution and, more specifically, the habitat of
ETP dolphins in relation to encounter rate (number
of groups of animals observed per unit survey effort).
Au and Perryman (1985)defined habitat characteris-
tics of common (Delphinus delphis), striped (Stenella
coeruleoalba), spotted (Stenella attenuata) and spin-
ner (Stenella longirostris) dolphins in the ETP. They
qualitatively identified two contrasting patterns in the
distribution of dolphin sightings and postulated that
the patterns were linked to the physical oceanogra-
phy in the region. In particular,Au and Perryman
(1985)noted that common and striped dolphins tended
to occur in upwelling-modified conditions typical of
waters along the equator and in the eastern bound-
ary currents, whereas spotted and spinner dolphins
were found in warm, low salinity surface waters over a
strong, shallow thermocline in tropical waters off Mex-
ico. The results fromReilly’s (1990) statistical analyses
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investigated dolphin encounter rate data from 1998 to
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patterns of dolphin habitat use between the late 1980s
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varies spatially. Spatial variation in group size is indeed
evident in the delphinid populations in the ETP.Hedley
and Buckland (2004)described, but did not imple-
ment, analytical methods for creating spatial models
of cetacean group size. We build on these previous
studies to produce the first geo-spatial line-transect
population density estimates for cetaceans from sepa-
rate encounter rate and group size GAMs for delphinids
(species in the family Delphinidae) in the ETP.

The following delphinid species were included in
our analysis: spotted dolphin (S. attenuata andS. atten-
uata graffmani), eastern spinner dolphin (Stenella lon-
girostris orientalis), whitebelly spinner dolphin (S. lon-
girostris), long-beaked common dolphin (Delphinus
capensis), short-beaked common dolphin (D. delphis),
striped dolphin (S. coeruleoalba), rough-toothed dol-
phin (Steno bredanensis), bottlenose dolphin (Tursiops
truncatus), Risso’s dolphin (Grampus griseus), Pacific
white-sided dolphin (Lagenorhynchus obliquidens),
Fraser’s dolphin (Lagenodelphis hosei), northern right
whale dolphin (Lissodelphis borealis), melon-headed
whale (Peponocephala electra), pygmy killer whale
(Feresa attenuata), false killer whale (Pseudorca cras-
sidens), killer whale (Orcinus orca), long-finned pilot
whale (Globicephala melas), short-finned pilot whale
(Globicephala macrorhynchus), and “dolphin, uniden-
tified to species.” We pooled all species of dolphins

in the ETP for two reasons. First, dolphins, oceanic
sharks, tunas, sperm whales, pilot whales, and ziphiid
(beaked) whales comprise a guild of apex predators
that prey upon fish and squid in the pelagic marine
environment, and obtaining more information about
the guild is valuable to ecologists and public policy-
makers (Smith and Casey, 1992). Second, this analysis
can provide a baseline with which to compare dolphin
species-specific habitat analyses.

2. Methods

2.1. Study area

The study area encompasses 19.6 million km2 of the
eastern tropical Pacific Ocean (Fig. 1). Circulation pat-
terns in the surface waters of the region are dominated
by the zonal equatorial current system between the
anticyclonic North and South Pacific subtropical gyres
(Kessler, 2006). The California Current and the Peru
Current form the eastern boundaries of the North and
South Pacific gyres, respectively (Fig. 2). The Califor-
nia Current flows into the North Equatorial Current,
and the Peru Current flows into the South Equatorial
Current. The North Equatorial Countercurrent flows
towards the east in the latitudes between the North

F rea. S ter; ESW:
E ce tem
ig. 2. Oceanography of the eastern tropical Pacific study a
quatorial Surface Water. Shading indicates relative sea surfa
TSW: Subtropical Surface Water; TSW: Tropical Surface Wa
peratures.
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and South Equatorial Current. Three primary surface
water masses exist in the ETP: the warm, low-salinity
Tropical Surface Water, which includes the eastern
Pacific warm pool and underlies the Intertropical Con-
vergence Zone (ITCZ), a zonal band between 5◦ and
10◦N where rainfall is high as a result of the north and
south trade winds converging; the higher-salinity Equa-
torial Surface Water (the coldest surface water mass)
with the equatorial cold tongue projecting from its east-
ern boundary; and the cool, Subtropical Surface Water
located towards the poleward edges of the ETP, where
the highest salinities are found (Fiedler and Talley,
2006) (Fig. 2). The thermocline is strongest beneath
the Tropical Surface Water and weakest beneath the
Subtropical Surface Water (Fiedler and Talley, 2006).
Although not considered part of the ETP, but included
in the analysis nonetheless, the Gulf of California is
a region in which evaporation largely exceeds precip-
itation, resulting in highly saline surface waters. The
physical and biological oceanography in the study area
interact to produce highly productive waters in the
upwelling regions of the California Current, Peru Cur-
rent, equatorial cold tongue, and Costa Rica Dome,
in contrast to the low productivity of the oligotrophic
Subtropical Surface Water (Ryther, 1969; Fiedler and
Philbrick, 2002; Fiedler, 2002) (Fig. 2). In general, both
coastal and oceanic upwelling regions are characterized
by relatively weak and shallow thermoclines and high
levels of chlorophyll. In comparison, the oligotrophic
regions have stronger and deeper thermoclines, and
l
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In brief, two teams of three visual observers rotated
through three positions located on the flying bridge of
the ship. Starboard and port observers used 25× 150
“bigeye” binoculars, scanning an arc of approximately
100◦ extending from the starboard and port beams,
respectively, to 10◦ on the opposite side of the track-
line. A third observer, the designated data recorder,
searched with naked eye and, occasionally, 7× 50
binoculars across the entire 180◦ arc in front of the
ship. All cetaceans sighted were identified to the low-
est taxonomic level possible. Group size estimates were
recorded independently by each observer.

The in situ oceanographic data collected during the
line-transect surveys, and considered as potential pre-
dictor variables in the encounter rate and group size
models, were: sea surface temperature (SST), sea sur-
face salinity, thermocline depth, thermocline strength,
and the natural logarithm of surface chlorophyll con-
centration (hereinafter simply referred to as surface
chlorophyll concentration). Details of the oceano-
graphic data collection methods for each ship and each
year between 1986 and 1990 are available inThayer
et al. (1988a, 1988b, 1988c, 1988d), Lierheimer et
al. (1989a, 1989b, 1990a, 1990b), andPhilbrick et al.
(1991a, 1991b). Oceanographic methods and results
from the 1993 cruise have not yet been published.
The temperature and salinity of the sea surface were
recorded continuously using a thermosalinograph and
then summarized as hourly means, resulting in a spatial
resolution of approximately 18.5 km (Table 1). Ther-
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.2. Field methods

Cetacean sighting data and in situ oceanogra
ata were collected on SWFSC research cruises
ucted during the summer and fall of each year f
986 to 1990, and in 1993 (Fig. 1). Two Nationa
ceanic and Atmospheric Administration (NOA

esearch vessels, the David Starr Jordan and
cArthur, followed standard line-transect protoc

Buckland et al., 2001) to survey cetaceans in the ea
rn tropical Pacific Ocean, while concurrently colle

ng a suite of oceanographic data over the length o
rackline.

Kinzey et al. (2000)provide a complete descri
ion of the SWFSC cetacean data collection proced
ollowed during the ship-based line-transect surv
ocline depth and strength were derived from C

able 1
emporal and spatial resolution of in situ oceanographic
ollected during SWFSC cetacean line-transect survey cruis
986–1990 and 1993

ariable name Resolution

ea surface temperature Recorded every 5 min; summar
into hourly means (approximately
18.5 km)

ea surface salinity Recorded every 5 min; summariz
into hourly means (approximately
18.5 km)

hermocline deptha 40–110 km
hermocline strengtha 40–110 km
urface chlorophyll con-
centration

15–130 km

a These variables were derived from CTD (conductivity, temp
ure, and depth) and XBT (expendable bathythermographs) da
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(conductivity temperature depth) stations and XBT
(expendable bathythermograph) probes, having a spa-
tial resolution of approximately 40–110 km (Table 1).
Surface chlorophyll concentrations have a spatial res-
olution of approximately 15–130 km (Table 1). Beau-
fort sea state was recorded while the marine mammal
observers were on-effort and was updated whenever
conditions changed. Beaufort sea state is a dominant
factor affecting the visibility of cetaceans; therefore,
Beaufort was included in all models to account for
potential biases due to visibility. Although it might
be possible to account for the sea state visibility bias
elsewhere in the density analysis, including Beau-
fort as a predictor variable in the generalized addi-
tive model automatically accounts for correlations
among other predictor variables, thereby providing a
better assessment of each predictor variable’s indi-
vidual effects on the response variable (Hastie and
Tibshirani, 1999). In addition, Beaufort sea state can
be thought of as an environmental predictor because
it reflects the strength of the winds, which varies
geographically.

Additional environmental data that were consid-
ered in the models include distance from shore, depth
and slope of the ocean bottom, latitude, and longi-
tude. Offshore distance was calculated as the short-
est distance between a given point on the trackline
and the closest point on the North, Central, or South
American mainland. Depth data were obtained from
the National Geophysical Data Center’s TerrainBase
d
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equation:
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whereZE, ZW, ZN, andZS refer to the grid nodes to
the east, west, north, and south of the desired node.
Second, the slope for the segment midpoint was
assigned the value of the slope of the node closest to
the segment midpoint.

Delphinid sighting data for each segment were sum-
marized as the total number of groups sighted and the
average group size in the segment. Prior research has
shown that individual observers’ estimates of group
size can be biased compared to counts made from
aerial photographs and that group size estimates can be
improved by applying individual-specific calibrations
to correct this bias (Gerrodette et al., 2002). Comput-
ing the average group size for each segment required
three steps: (1) calculate the bias-corrected group size
estimate for each observer for each sighting in the
segment based on individual calibration coefficients;
(2) calculate the mean group size estimate, averaged
over all observers, for each sighting in the segment;
(3) calculate the mean group size estimate, averaged
over all sightings, for each segment. For the first step,
calculating individual observers’ calibrated group size
estimates, one of three methods was used; all methods
were derived by comparing the observers’ uncalibrated
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size estimate for the sighting. If the indirect calibra-
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represented as (Hastie and Tibshirani, 1999)

g(µ) = α +
p∑

j=1

fj(Xj) (4)

As in generalized linear models (GLMs), the func-
tion g(µ) is known as the link function, and it relates
the mean of the response variable given the predictor
variables,µ = E(Y|X1, . . ., Xp), to the additive predictor
α + ∑

jfj(Xj). GAMs are nonparametric extensions
of GLMs: the componentsfj(Xj) in the additive pre-
dictor may include nonparametric smooth functions of
the predictor variables, allowing GAMs to be consider-
ably more flexible than GLMs, which are restricted by
the constraints of the linear predictor,α + ∑

jβjXj.
Separate GAMs were built using smoothing spline
functions to describe and predict delphinid encounter
rates and average group sizes. The encounter rate
data were essentially clustered counts; therefore, the
number of sightings in each segment was modeled
using a quasi-likelihood error distribution with vari-
ance proportional to the mean and using a logarithmic
link function (approximating an over-dispersed Pois-
son distribution). Encounter rate models were built
using all 9 km segments, regardless of whether they
contained sightings. Observed distributions of dolphin
group sizes in the ETP region typically have long tails
and are restricted to the positive real values. Further-
more, after correcting for bias and averaging group
sizes across individuals and sightings in each segment,
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Information Criterion (AIC) was used to determine the
best model at each step. Stepwise selection of variables
occurred twice for each model. The first stepwise selec-
tion process started with the null model, did not contain
terms for latitude or longitude, and linear terms were
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The final delphinid encounter rate model included
longitude, and the group size model included both
latitude and longitude. To determine the effect that
fixed geographic variables had on the predictive perfor-
mance of the model, the stepwise selection and cross-
validation procedures were repeated, excluding latitude
and longitude from the scopes of both calls tostep.gam.
The ASPE values of the final models built without geo-
graphic variables in the scopes were compared to the
final models built with geographic variables; the mod-
els with the lowest ASPE values were selected as the
best overall encounter rate and group size models.

To estimate delphinid density, the encounter rate
(n/L) and group size (S) model results were incorpo-
rated into the standard line-transect equation

D =
( n

L

)
S

1

2 ESWg(0)
(5)

wheren/L is the encounter rate (number of sightings
per unit length of trackline);S the expected (or mean)
group size; ESW the effective strip half-width, or 1/f(0),
wheref(0) is the sighting probability density at zero per-
pendicular distance;g(0) the probability of detecting an
animal on the trackline.

The values off(0) andg(0) were the arithmetic aver-
age of those given for the delphinids in the ETP by
Ferguson and Barlow (2001). It was necessary to apply
a bias-correction factor to the group size predictions
from the GAMs because the models were built in log
space and then the results were transformed back to
a ate
t ;
S ect
f
s ive a
g r the
s ting
i tio
s

(the
d nal-
y fit to
t for all
s ween
p
w

�

for segmenti in the study area. In addition, the ratio
(RER) between pooled predicted values and pooled
observed values was calculated:

RER =
∑n

i=1ERipredicted∑n
i=1ERiobserved

(7)

where the summation is over the total number of seg-
ments used to build the models or the number of
segments in a given geographic stratum, as described
below. Group size was predicted from GAMs based
on the subset of data comprised of only the segments
with delphinid sightings. This subset of predictions
was appropriate for testing how well the model pre-
dicted group size for each segment (�SSi) and for
the study area as a whole (RSS) because the group
size model was built on the same subset of data
upon which the predictions were based. The group
size predictions were corrected for the bias due to
back-transforming from the log space, and the com-
putations for�SSi and RSS were analogous to the
respective encounter rate statistics (Eqs.(6) and (7)).
To qualitatively determine whether spatial patterns
existed in the predictions for encounter rate and group
size, a spatially stratified analysis was conducted in
which values ofRER and RSS were calculated for
geographic strata of approximately 5◦ latitude× 5◦
longitude.
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Table 2
Number of samples (n) used to build the encounter rate and group size GAMs, and mean bias-corrected group size (averaged across all sightings
and all segments) for each delphinid species in the analysis

Common names Scientific names Encounter rate (n) Group size (n) Mean group size

Dolphin, unidentified to species 735 398 26.11
Striped dolphin S. coeruleoalba 493 471 55.48
Offshore pantropical spotted dolphin S. attenuata 302 293 131.03
Bottlenose dolphin T. truncatus 296 274 24.12
Risso’s dolphin G. griseus 206 189 18.64
Eastern spinner dolphin S. longirostris orientalis 144 138 108.82
Short-beaked common dolphin D. delphis 131 129 230.38
Rough-toothed dolphin S. bredanensis 123 120 15.46
Short-finned pilot whale G. macrorhynchus 122 117 18.29
Pilot whale, unidentified to species Globicephala sp. 68 62 17.18
Whitebelly spinner dolphin S. longirostris 56 56 82.54
Killer whale O. orca 42 41 5.45
Long-beaked common dolphin D. capensis 25 23 411.69
False killer whale P. crassidens 25 19 11.00
Pygmy killer whale F. attenuata 23 23 30.12
Pantropical spotted dolphin, unidentified subsp. S. attenuata 19 18 186.20
Spinner dolphin, unidentified subsp. S. longirostris 15 13 147.74
Coastal spotted dolphin S. attenuata graffmani 15 15 124.00
Common dolphin, unidentified subsp. Delphinus sp. 12 10 311.14
Fraser’s dolphin L. hosei 11 11 440.05
Melon-headed whale P. electra 6 5 257.70
Pacific white-sided dolphin L. obliquidens 3 3 127.38

Group size models used only sightings for which complete group size data were available, as discussed in the text.

was incorporated into the model as a smoothing spline
with two d.f., whereas the remaining variables were
selected as smoothing splines with three d.f. The
decrease in deviance from the null model to the best

Fig. 3. Average size of delphinid groups in 9 km segments used
to build group size GAMs. Data were collected during 1986–1990
and 1993 shipboard cetacean line-transect surveys conducted by the
Southwest Fisheries Science Center.

encounter rate model was 12.12% (Table 3). The
overall best group size GAM contained six terms:
latitude, longitude, offshore distance, depth, slope, and
SST (Table 3, Fig. 5). The best group size model built
without latitude and longitude resulted in a higher
ASPE value in the cross-validation process. The
variables latitude, offshore distance, depth, and SST
were accepted into the model as linear terms; longitude
appears as a smoothing spline with two d.f. (although
it shows little departure from linearity;Fig. 5); and
seafloor slope was included as a smoothing spline
with three d.f. The decrease in deviance from the null
model to the overall best group size model was 4.95%
(Table 3).

When the selected encounter rate and group size
models were applied to in situ data from the cruises
on which they were built, the resulting density pre-
dictions ranged from 26 to 5205 individuals/1000 km2

(mean = 387, S.D. = 405). Regions with the highest pre-
dicted densities were the Gulf of California, the equa-
torial cold tongue, and coastal waters, including the
west coast of the Baja Peninsula and the Costa Rica
Dome (Fig. 6). Offshore waters in the northern and
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Table 3
Summary of delphinid encounter rate and group size GAMs for the eastern tropical Pacific

Model Year
omitted

Predictor variables

Lat Long Beaufort Offshore
distance

Depth Slope SST Salinity ln(surface
chlorophyll)

Thermocline
depth

Thermocline
strength

Encounter rate 1986 S3 S3 S3 S3 S3 S3 S3 S3
1987 S3 S3 S3 S3 S2 S3 S3 S3
1988 S3 S3 S3 S3 L1 S3 S3 S3
1989 S3 S3 S3 S3 S2 S3 S2 S3 S3
1990 S3 S3 S3 S3 S3 S3 S2 S3

Group size 1986 S3 S2 L1 L1
1987 L1 S2 L1 L1 S3 L1
1988 S3 L1 S2 S2 L1
1989 S3 L1 L1 L1 S2
1990 L1 L1 S3 L1 S2

Linear fits are represented by “L1”, whereas smoothing splines are represented by “S#”, where # is the associated degrees of freedom. Final
selected model indicated by bold font. Percent change in deviance was calculated for final selected model, rebuilt using all years’ data, as: ((null
deviance− residual deviance)/null deviance)× 100%. Percent change in deviance was 12.12% for the encounter rate model and 4.95% for the
group size model.

southern subtropical gyres had the lowest predicted
densities.

The error analysis showed that the mean differences
(averaged across all years and all segments used to
build the models) between predicted and observed val-
ues of encounter rate and group size were zero. The
standard deviation of the differences in predicted and
observed encounter rates was 0.5 and the range was
−9.0 to 1.15 groups. For the group size model, the
standard deviation of the differences was 134.6 and
range was−2412.5 to 288.9 individuals. When pool-
ing all segments used to build the models, the ratio
of pooled predicted to pooled observed was 1.0 for
both models. The geographically stratified analysis of
RER showed that, in over half of the strata, the ratio of
pooled predicted to pooled observed encounter rates
is close to 1.0 (±0.25), and there was no apparent
geographic pattern in the ratio values (Fig. 7). The
range ofRER values was from 0.5 to 3.4 (50% under-
estimate to 340% overestimate by the model). The
geographically stratifiedRSSvalues spanned a broader
range (0.4–12.6), although, in approximately half of the
strata, predicted values were within 25% of observed,
and geographic pattern was not evident in the ratio val-
ues (Fig. 8) with the possible exception of a contiguous
block of cells south of the equator between 90◦ and
110◦W, which all have higher predicted than observed
values.

4. Discussion

GAMs are commonly used to model the relation-
ships between habitat predictors and species pres-
ence/absence (e.g.,Moisen and Frescino, 2002; Seoane
et al., 2004; Olivier and Wotherspoon, 2005) or relative
population abundance measures such as the number of
seabird nests in a colony (Olivier and Wotherspoon,
2005). Our use of generalized additive models in this
analysis is unique because we are able to predict the
density of individuals throughout the study area. Pre-
vious analyses of cetacean habitat associations in the
ETP (Reilly, 1990; Reilly and Fiedler, 1994; Reilly et
al., 2002) and elsewhere (Forney, 1999, 2000; Hedley
et al., 1999; Hedley and Buckland, 2004) examined the
relationship of group encounter rate (another relative
measure of population abundance) to environmental
predictors, but did not include variation in group size.
Understanding the variability in population density
requires using information on both encounter rate and
group size. Although there was some qualitative evi-
dence of increased delphinid group sizes in the waters
around the Baja Peninsula, the Costa Rica Dome, and
the equator, our models explained relatively little of the
variability in the observed data as judged by percent
decrease in deviance. This inability to detect patterns
could be due to an inappropriate choice for the group
size sampling distribution. The gamma distribution was
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Fig. 4. Smooth spline functions of the predictor variables incorporated in the final delphinid encounter rate (no. of sightings/unit survey effort)
GAM. Degrees of freedom for nonlinear fits are in the parentheses on they-axis. Tick marks above thex-axis indicate the distribution of
observations in all segments (with and without delphinids). (a) Scaling ofy-axis varies among predictor variables to emphasize model fit. (b)
Partial deviance residuals shown as open circles. Scaling ofy-axis is constant among predictor variables.
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Fig. 5. Smooth spline functions of the predictor variables incorporated in the final delphinid group size GAM. Degrees of freedom for nonlinear
fits are in the parentheses on they-axis. Tick marks above thex-axis indicate the distribution of observations in all segments with delphinid
sightings. (a) Scaling ofy-axis varies among predictor variables to emphasize model fit. (b) Partial deviance residuals shown as open circles.
Scaling ofy-axis is constant among predictor variables.



658 M.C. Ferguson et al. / Ecological Modelling 193 (2006) 645–662

Fig. 6. Predicted delphinid density (no. of individuals/1000 km2) in
the eastern tropical Pacific Ocean. Predictions are based on oceano-
graphic data collected during the 1986–1990 and 1993 cetacean
line-transect surveys conducted by the Southwest Fisheries Science
center. Predicted values were smoothed in geographic space using
inverse distance weighting.

also tested on the group size data and found to perform
poorly relative to the lognormal distribution we used.
It is also possible that we did not measure the appro-
priate elements of the ecosystem, such as abundance or
density of prey species, in order to identify the existing
patterns. This lack of success in modeling group size
may be due to a mismatch in our predictor variables,
and it may vary by species, location, or time, so it would
be prudent to examine each case separately.

Generalized additive models were chosen for the
ETP analysis because of their flexibility. In our anal-
ysis, the flexibility of the GAM was manifest in the
plots of the smooth functions for the predictor vari-
ables that were present in the final delphinid encounter
rate and group size GAMs, and in the error analysis
for the models. In particular, the model fits describ-
ing the relationship between slope and group size, and
those relating encounter rate to longitude, offshore
distance, depth, sea surface salinity, surface chloro-
phyll concentration, and thermocline depth were all
nonlinear. The error analysis showed that differences
between observed and predicted values were small and
that the ratios of pooled predicted to pooled observed
values were close to 1.0. Furthermore, in the geograph-
ically stratified analysis comparing model predictions
to observed values, encounter rate and group size pre-

Fig. 7. Geographic distribution of residuals for delphinid encounter
rates measured as the ratioRER = [sum(predicted)/sum(observed)].
Predictions were based on observed oceanography data from South-
west Fisheries Science Center cetacean line-transect survey cruises
in 1986–1990 and 1993.

dictions in the majority of the strata were within 25%
of the observed values. Overall, we were effectively
able to increase the resolution of density predictions
by using more of the information from the SWFSC
survey cruises in the ETP, relating delphinid density to
several environmental predictors in a relatively simple
process, and allowing finer resolution of the patterns in
delphinid density than is available using a conventional
stratified line-transect analysis.

Fig. 8. Geographic distribution of residuals for delphinid group sizes
measured as the ratioRSS= [sum(predicted)/sum(observed)]. Predic-
tions were based on observed oceanography data from Southwest
Fisheries Science Center cetacean line-transect survey cruises in
1986–1990 and 1993.
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The error analysis addressed the question of how
well the models fit the data on which they were
built, but the predictive performance on completely
novel data (i.e., data from a future ETP survey) needs
to be addressed further. Most of the predictor vari-
ables that we considered were proxies for character-
istics of the environment that potentially relate more
directly to delphinid density, such as prey concentra-
tions. The predictive performance of these delphinid
density models when applied to new data may be
improved if more information about the prey were
available.

One drawback to GAM methodology is that estimat-
ing variance in predictions is not simple. The sources
of uncertainty in the ETP analysis are numerous and
not fully understood. Several sources of uncertainty
include: (1) survey design, because changing the spa-
tial or temporal specifications of the shipboard survey
tracklines would have produced a different set of del-
phinid and oceanographic observations; (2) error in the
measurement of environmental variables; (3) stochas-
ticity inherent in the Poisson sampling process generat-
ing the encounter rates; (4) parameter estimation error
in the model fitting process; (5) model selection error
associated with choosing the appropriate variables and
corresponding degrees of freedom; (6) errors due to
a disassociation between the animals’ distribution and
the predictor variables used to try to understand the
ecology of the system.Hedley et al. (1999)andHedley
and Buckland (2004)have addressed the problem of
e ic-
t oot-
s with
l ove)
a ove).
W s of
u ,
2

re-
d our
a hree
l uto-
c tion
o ding
p phic
d and
d the
e int;

whether environmental effects are transmitted as a con-
stant function or decay with distance from a point;
the appropriate size of the study area, which should
be large enough to encompass meaningful contrasts
but small enough to thoroughly sample; the taxonomic
level (population, species, genus, or family); and the
temporal scale (seasonal, annual, multi-year, decadal).
We showed that there was no pattern in the residuals
on the 5◦ × 5◦ scale, but it is unknown whether auto-
correlation exists on smaller scales. Assessing whether
autocorrelation exists in the model residuals is impor-
tant for accurately quantifying the variance in the model
predictions and, from an ecological perspective, for
accurately identifying which environmental variables
are associated with observed patterns in animal den-
sity. The main issue regarding model implementation
is obtaining quality environmental data on which to
make predictions. Remotely sensed data and predic-
tions from physical and biological oceanographic mod-
els are advantageous because they are synoptic and
available for all seasons. Nevertheless, remotely sensed
data are limited to surface observations and they do
not provide direct information on cetacean prey. Fur-
thermore, both remotely sensed data and modeled data
should be ground-truthed before they are relied upon
as input into predictive models. A further detail related
to implementing these encounter rate and group size
models to predict densities involves the estimation of
f(0). The values off(0) were based upon stratified
estimates for the survey region. In some situations, it
m
t etc.
( 02a,
2

m
c ume
a en-
t as it
w and
o cean
d ise
t n the
o ons
w nsi-
t size
i nvi-
r em,
c er-
stimating two sources of variance in GAM pred
ions by applying parametric and nonparametric b
trap methods to estimate the variance associated
ine-transect parameter estimation (number 4 ab
nd stochasticity in encounter rates (number 3 ab
ork is ongoing to understand the various source

ncertainty and to estimate their magnitude (Ferguson
005).

We consider these GAMs to be a first step in p
ictive modeling of cetacean densities because
nalysis posed more questions than it answered. T

ines of active research involve issues of scale, a
orrelation, and model implementation. The ques
f scale permeates all aspects of the model-buil
rocess: the spatial resolution of raw oceanogra
ata; the unit (i.e., line segment, circle, or sphere)
istance used to define neighborhoods in which
nvironment influences the habitat of a given po
ay be more appropriate to incorporate values off(0)
hat are functions of sighting conditions, location,
e.g.,Marques, 2001; Gerrodette and Forcada, 20
002b).

It is important to keep in mind that predictions fro
etacean-habitat models such as ours implicitly ass
particular population size and set of environm

al conditions for some specified study area. Just
ould be unwise to use a model built on cetacean
ceanographic data from the ETP to predict ceta
ensities in the Gulf of Alaska, it would also be unw

o use a model built on cetacean data gathered whe
verall population size was large or climatic conditi
ere significantly different to predict cetacean de

ies in the same region when the overall population
s small. Density dependent effects and unknown e
onmental effects may significantly alter ecosyst
ommunity, or population dynamics, and blind adh



660 M.C. Ferguson et al. / Ecological Modelling 193 (2006) 645–662

ence to model predictions could result in significant
errors. Therefore, we advocate an iterative approach to
predictive modeling where large-scale abundance esti-
mates are used to inform models that predict densities
at smaller scales, which, in turn, may be used to fine-
tune the large-scale abundance estimates.

In summary, GAM-based methods have the poten-
tial to predict cetacean densities on smaller spatial
scales than conventional line-transect analyses. Future
work should focus on understanding the ecology of del-
phinid prey and on addressing questions of variance
estimation, scale, autocorrelation, and model imple-
mentation. In addition, we can test the performance
of our GAMs by evaluating how well they predict del-
phinid densities observed on future surveys. The model
fits from this GAM analysis also provide starting points
for testing hypotheses about ecological associations
between the cetaceans and their environment, lead-
ing to more insight into the mechanisms that structure
cetacean distributions. Finally, there is value in com-
paring predictions from different types of models, and
work should continue on developing new and better
frameworks for spatial modeling of cetacean density.
Even though the truth may never be known, such a
comparative analysis may reveal biases associated with
each method, increasing our understanding of the eco-
logical system along the way.
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